

AXIS Consortium: Crystal Actuator Applications

- Critical DOD system demonstrations to show merits of single crystals over other smart materials technologies
- Crystal component manufacturing optimization and cost reduction
- Crystal characterization and modeling

Crystal Component and Stack Manufacturing; Bridgman & TGG Development

Device Characterization and Modeling

Micro-actuators for Commerical Applications

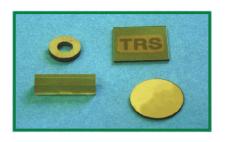
Tonpilz Arrays for Topedo Sonar

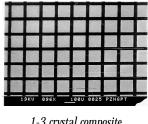
Active Flow Control; Stacks for Smart Structures

Government Participants

Crystal/Cymbal Arrays

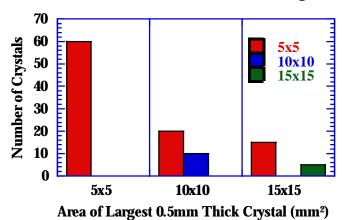
Crystal Characterization




AFC; Patch Actuators

Flux Growth of PZN-PT

- Irregular growth shape & size limitations
- Most developed technique
- Largest size: 25 mm x 15 mm
- Rectangular plates as thin as 4 mils, disks, rings, composites



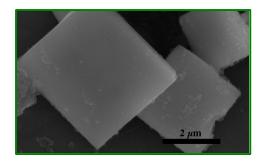
1-3 crystal composite (posts are 150 **m**m square)

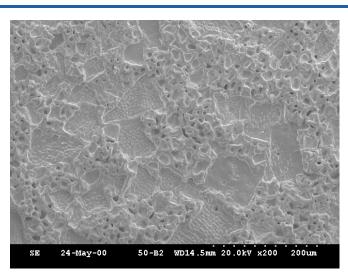
Each Crucible Yields One of the Following Cases:

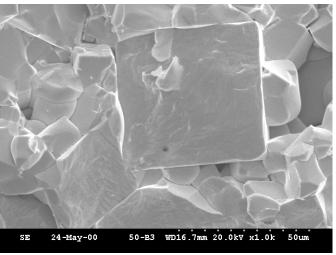
Bridgman Growth of PMN-PT

- Faster growth rate
- Simplified orientation and machining
- Reduced cost over flux
- Goal: crystals > 2 inches in diameter
- Current crystals are 1 inch in diameter

Orientation	K 33	S33 ^E (10 ⁻¹²	d 33	K	Fr Cnst
		m²/N)	(pC/N)		(Hzm)
<100>	0.92	68 to 77.5 ⁺	1900 to 2100	6100* to 6800	1640


 ${}^{+}Y_{E}$ = 14 to 15 Gpa, 50% stiffer than PZN-PT crystals




Growth from Hydrothermal PbTiO₃

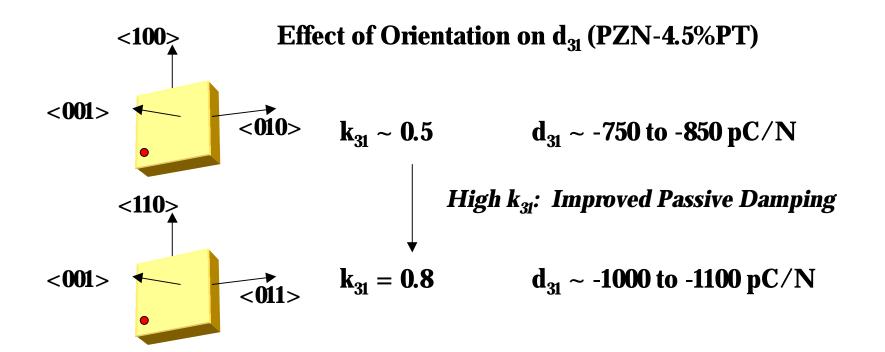
- Templated Growth of Grain Oriented Ceramics
- Chemically *Homogeneous* Microstructure
- Large Scale, Low Cost Seed Production
- First Demonstration of Growth from PT Seeds

Hydrothermal PT Platelets

d₃₁ Actuation with Single Crystals

Active Flow Control (Boeing, NASA)

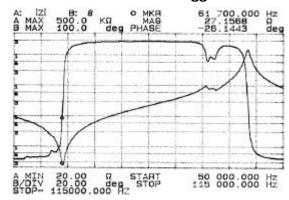
Benders (ACX)


Patch Actuators for Active and Passive Damping (NASA, ACX)

Cymbal Arrays (NRL)

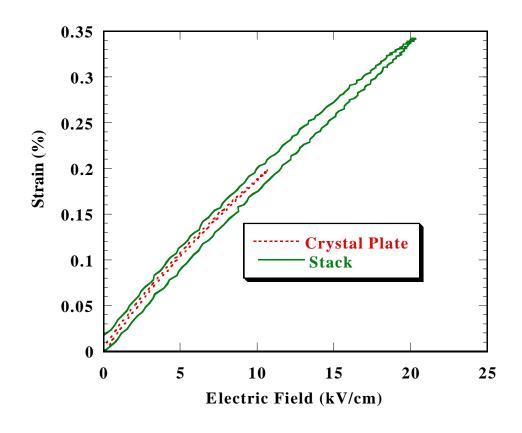
All Require

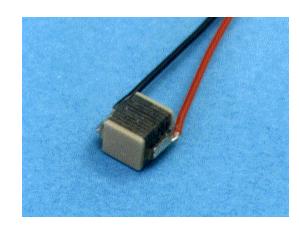
d₃₁ Mode


Actuation

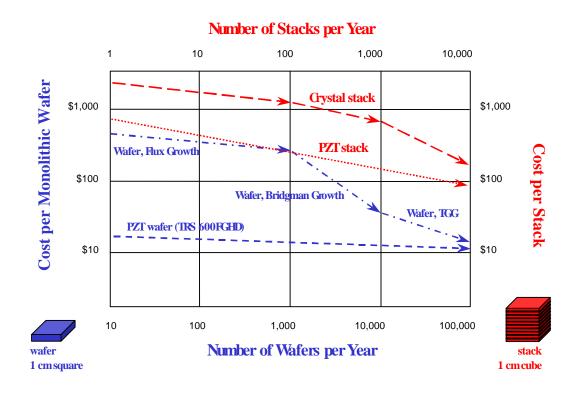
Transducer Stack for NUWC Sonar Application

Resonance: $k_{33} = 0.9$


NUWC Single Crystal Stack Performance 3.6 mm x 3.6 mm x 9.0 mm 5 active layers 0.4 Single Crystal 0.35 Plate ... 0.3 Crystal Stack 0.25Strain (%) 0.2 0.15 0.1 0.0510 15 20 25 Electric Field (kV/cm)


Improved Performance over Actuator Stack Due to Increase in Plate Thickness (1.8mm) & Reduction in Shim Thickness (0.5 mil)

Crystal Actuator Stack



- Equivalent Strain Response for Bulk Crystal and Stack
- Achieved with Reduced Shim Thickness and Increased "Lacyness"

TRS Goal: Component Cost Reduction

as new manufacturing technologies are developed by TRS

